

This work is licensed under a Creative Commons Attribution 4.0 International License

(http://creativecommons.org/licenses/by/4.0/

PaNOSC

Photon and Neutron Open Science Cloud

H2020-INFRAEOSC-04-2018

Grant Agreement Number: 823852

Deliverable: D3.3 Catalogue Service

(federation of search APIs)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

2

Project Deliverable Information

Sheet

Project Reference No. 823852

Project acronym: PaNOSC

Project full name: Photon and Neutron Open Science Cloud

H2020 Call: INFRAEOSC-04-2018

Project Coordinator Andy Götz (andy.gotz@esrf.fr)

Coordinating Organization: ESRF

Project Website: www.panosc.eu

Deliverable No: D3.3

Deliverable Type: Report

Dissemination Level Public

Contractual Delivery Date: 2022-03-31

Actual Delivery Date: 2022-03-21

EC project Officer: Flavius Alexandru Pana

Document Control Sheet

Document Title: Catalogue Service

Version: 1

Available at:

https://github.com/panosc-eu/panosc

Files: 1

Authorship Written by: Tobias Richter (ESS)

Contributors: Fredrik Bolmsten (ESS),

Massimiliano Novelli (ESS), Luis Maia (XFEL),

Axel Bocciarelli (ESRF), Alex de Maria (ESRF),

Marjolaine Bodin (ESRF), Carlo Minotti (PSI),

Emiliano Coghetto (CERIC), Alessandro Olivo

(CERIC), Balázs Bagó (ELI-ALPS), Lajos

Schrettner (ELI-ALPS)

Reviewed by: Andy Götz (ESRF)

Approved: Jordi Bodera (ESRF)

List of Participants

Participant

No.

Participant organisation name Country

1
European Synchrotron Radiation Facility

(ESRF)
France

2 Institut Laue-Langevin (ILL) France

3 European XFEL (XFEL.EU) Germany

4 European Spallation Source (ESS) Sweden

5
Extreme Light Infrastructure ERIC (ELI-

ERIC)
Belgium

6
Central European Research Infrastructure

Consortium (CERIC-ERIC)
Italy

7
EGI Foundation (EGI.eu) The

Netherlands

3

Table of Contents

Project Deliverable Information Sheet 2

Document Control Sheet ... 2

List of Participants ... 2

Table of Contents .. 3

Executive Summary .. 5

Introduction ... 6

Third Iteration of PaNOSC Search API 7

Improvements and documentation updates 7

Differences between “federated” and “local” API 9

Parameters .. 9

Pagination .. 9

Authentication ... 10

Techniques .. 10

Usage examples ... 11

Implementation ... 13

Search Results Scoring .. 14

Architecture ... 14

Establishing the Score ... 16

Scoring Algorithm and Process 16

Populating scoring information 16

Weights computation .. 17

Score computation .. 19

Scoring Implementation ... 20

Scoring service .. 20

Common Search API Endpoint Implementations 21

Reference API .. 21

ICAT ... 21

SciCat implementation .. 24

Invenio RDM implementation ... 25

Status of Endpoints at Partners 25

ESS .. 26

XFEL ... 27

ESRF ... 27

ILL .. 28

CERIC-ERIC ... 28

ELI .. 29

The Federated Search Service .. 30

4

Backend API ... 30

Federated items selection .. 30

Deployment Procedure .. 30

Web Frontend .. 32

Summary and Outlook ... 33

Appendix 1 Search Query Examples 34

Example 1: Datasets where title contains the word data 34

Example 2: Datasets relevant to “data beam” 35

Example 3: Datasets relevant to “temperature beam” 36

Example 4: Documents with title containing “data” 37

Example 5: Datasets with title contains “open beam” including all

parameters .. 38

Example 6: Search for a specific datasets 39

Example 7: Datasets containing specific parameters 41

Appendix 2: Techniques Ontology Examples 44

Example 1: Single technique expansion 44

Example 2: Logical or between techniques 44

Example 3: Logical and between techniques 45

5

Executive Summary

This document marks the delivery of a federated domain specific search as

a service for open data from PaN RIs. The search API service is running

and serves live data from PaNOSC and ExPaNDS partner sites (ESRF, ESS, ILL

and MaxIV). There is even a user web frontend that has been created in

collaboration with WP4.

The work builds on the two previous deliverables of PaNOSC WP3. First the

API was proposed. In the second iteration the API was improved with input

from the proof-of-concept demonstrator and site installations. Deploying

the search API as a service for the community as part of this deliverable

led to a number of improvements and clarifications in the API, driven by

the practical use. In addition, the earlier API definitions left the

question of how datasets can be queried using the techniques ontology and

how to rank (score) results from different facilities open. This has now

been defined and the implementation of the relevant modules at the partner

sites has started.

6

Introduction

This document summarises the development of a federated search service in

PaNOSC Work Package 3. The goal of the domain specific search service

developed in PaNOSC is to provide a unified way across facilities for

scientists in the photon and neutron community to find and filter data

using a variety of parameters. ExPaNDS, the INFRAEOSC-05b project, with

ten national Photon and Neutron Research Infrastructures (PaN RIs) is

working closely with the six PaNOSC partner facilities on common

objectives, especially in this data catalogue work package. ExPaNDS RIs

have committed themselves to roll out compliant implementations of the

search API that can be federated in the same service. This gives users a

single point of access to domain specific searches throughout most PaN RIs

in Europe.

Figure 1: Federated search service architecture.

Following up from the development of the common search API (D3.1) and the

development of a demonstrator implementation (D3.2) providing the search

as a service is the natural next step. It enables users with a single

submitted search query to retrieve matching results from all connected

sites in a common result list. After the successful evaluation of the

federated search demonstrator this deliverable marks the availability of

a production ready service provided towards the EOSC. The activities to

achieve this goal can be separated into a refinement of the search API to

address any issues that arose in the evaluation phase and work towards the

actual implementation. In addition, this deliverable will report briefly

on the implementation of software and curation effort at the partner

facilities. A more in-depth per-partner review will follow as D3.4.

7

Third Iteration of PaNOSC Search API

The score field for datasets was introduced in the second iteration of the

search API (D3.2). It was set to zero in preparation for the third iteration

of the search API which now introduces scoring based on relevance for a

given query. The addition of scoring for datasets is crucial as users,

using either the local or federated API, expect the most relevant datasets

to be listed first. The scoring algorithm was developed to be a standalone

service that integrates with search API and can therefore be used by all

facilities regardless of underlying infrastructures, ensuring that

calculated scores are fair and consistent. Documentation has also been

provided to all PaNOSC facilities outlining how scores shall be calculated

enabling other partners to implement their own versions.

Additionally, a more advanced search for datasets was developed when it

comes to techniques. Previous versions of the search API required users to

specify the exact technique stored on a dataset to be able to find it.

This is not a trivial task as there exist a wide range of techniques that

can be associated with a dataset in essence making it impossible to do

wide searches for technique specific datasets. The solution was to develop

a structure where more generic techniques attach to more specific ones

through a tree structure, this allows users to search for high level

techniques and get all associated techniques with it. A standalone service

has been created to provide the techniques translation functionality with

full integration with the search API, reference and SciCat implementation.

Improvements and documentation updates

The Human Organ Atlas (https://human-organ-atlas.esrf.eu/) is a project

run at the ESRF. It enables the wider science community and citizen

scientists to explore open imaging data of the human body collected at the

ESRF. The project adopted the PaNOSC search API as their chosen backend

for querying the image and model repository. The real-world use case helped

clarify some earlier decisions around the API. Latest changes implemented

in the reference implementation have been driven by the feedback provided

by ESRF and their Human Organ Atlas use case.

Figure 2: Human Organ Atlas (https://human-organ-atlas.esrf.eu/) browser

screenshot

https://human-organ-atlas.esrf.eu/
https://human-organ-atlas.esrf.eu/

8

The current search API has been updated to return all the parameters

associated in the datasets if the user requests them or specify a condition

on any parameter. In prior implementations, datasets were returned only

with the parameter specified in the query condition. Now the following

query, will return all the parameters of the dataset and not just the one

named “chemical_formula”:

{
 "include":[
 {
 "relation":"parameters",
 "scope":{
 "where":{ "name":"chemical_formula" }
 }
 }
]
}

The following query enables the user to retrieve datasets that specify

certain parameters, without imposing any condition on the parameters:

{
 "include":[
 {
 "relation":"parameters"
 }
]
}

In the previous version, this query request would have resulted in a server

error.

The documentation has been updated in order to clarify how to retrieve

datasets that match one of many conditions, which can be achieved with the

following filter syntax:

{
 "include":[
 {
 "relation":"parameters",
 "scope":{
 "where":{
 "or" : [
 { "name":"chemical_formula" },
 { "name":"photon_energy" }
]
 }
 }
 }
]
}

Users are now also able to specify multiple conditions on parameters which

are applied in logical and. In the previous iteration of the search API,

only one condition could be applied. If users would submit a filter with

the specified syntax, the service would apply only the last condition and

9

ignore all the others. For example, if we would like to select all datasets

that have two parameters one named chemical_formula and one named

photon_energy, the following filter should be submitted:

{
 "include":[
 {
 "relation":"parameters",
 "scope":{
 "where":{ "name":"chemical_formula" }
 }
 },
 {
 "relation":"parameters",
 "scope":{
 "where":{ "name":"photon_energy" }
 }
 }
]
}

This syntax looks somewhat verbose, due to constraints imposed by the

underlying technology framework and the data design, but it is a common

scheme that some developers will be familiar with.

Differences between “federated” and “local” API

The minimum required set of features for the local Search API are guided

by the implementation of the federated search. Each participating facility

is required to match this minimum required feature set, so it can be

queried by the PaNOSC Federated Search API. In addition, partners can

choose to expand the functionality of their implementation to meet local

requirements addressing use cases outside the PaNOSC project. This section

lists a few identified cases.

Parameters

The federated search does not provide a dedicated end point for providing

the complete list of parameter keywords. There is currently a limited list

of common parameters that aim to be curated by all partners, published in

the last WP3 deliverable. Providing the aggregated list of all potential

domain and facility specific parameter keywords would be a long, confusing

list of non-homogeneous terms. Here each facility has its own name

convention and its own set of parameters. It would not be helpful to refine

searches across different facilities. In the long run the aim is to have

a more extensive list of parameters curated in a common way, but that

requires local effort for the mapping. For the implementation of a local

API, for example like in the Human Organ Atlas use case, it may make sense

to support such an end point. That does not interfere with the federated

functionality.

Pagination

For browsing multiple pages of results, pagination needs to be supported

by the API. By design, the federated API should be stateless and simple

10

in its implementation. This functionality would result in a more

complicated code base and demand resources for caching. This led to the

decision to exclude pagination from the federated API. Again, at the local

endpoint level supporting pagination does not interfere with the

federation. So, each facility can decide to implement pagination in their

implementation of the PaNOSC search API.

Authentication

The Federated Search API does not require authentication as it serves only

public and published datasets. Following the same philosophy, the reference

implementation of the Search API does not have any authentication

mechanism. Each facility can decide to modify their implementation and add

authentication in order to address specific use cases that fall outside

the PaNOSC realm. In fact, many facilities have done this and it can

provide useful access to embargoed data to the original researchers

carrying out the experiments. But exploiting this capability at the

federated level would require trust between the user and the federated

endpoint and between the federated endpoint and the facilities. For

anything more than limited tests this cannot be achieved across

organisational boundaries for the foreseeable future.

Techniques

ExPaNDS have been working closely with PaNOSC on the Experimental technique

ontology - PaNET (Collins, Steve P., da Graça Ramos, Silvia, Iyayi, Daniel,

Görzig, Heike, González Beltrán, Alejandra, Ashton, Alun, Egli, Stefan, &

Minotti, Carlo. (2021). ExPaNDS ontologies v1.0. Zenodo

https://doi.org/10.5281/zenodo.4806026). Especially by defining the terms

that should be available in the controlled vocabulary. For the experimental

techniques, the idea was to use atomic classes to describe the techniques,

here are the four main categories: experimental physical process,

experimental probe, functional dependence and technique purpose (naming

may change after consultation with all PaNOSC/ExPaNDS partners). The

ontology has been defined as a graph structure going from generic terms to

more specific ones. Such a structure allows data curators to find the

correct term according to the best knowledge about the experiment at that

moment in time. Initially an assessment can be made based on basic

capabilities of the instrument or facility. A refinement can follow from

information about the beamtime proposal. A more experiment specific term

can be assigned to a dataset at a later time, highlighting the evolution

of the data curation. See figure 3 for a subset of the technique graph to

illustrate the relationship between the technique classes.

When a filter on techniques is specified in the PaNOSC search, the API

will find and return all datasets that are tagged with the specified

technique and all its descendants. A descendant is an ontology term which

has the term specified as one of its ancestors according to the ontology

graph.

To validate and curate the technique filter, a standalone catalogue

independent micro service, has been created under the umbrella of ExPANDS

task 3.3.

(https://docs.google.com/document/d/1e9m4KyZOLSkJMO9ex9W_mE_x7nNrzc1JDNz4

EfL7U-A section 6.2).

https://doi.org/10.5281/zenodo.4806026
https://docs.google.com/document/d/1e9m4KyZOLSkJMO9ex9W_mE_x7nNrzc1JDNz4EfL7U-A/edit
https://docs.google.com/document/d/1e9m4KyZOLSkJMO9ex9W_mE_x7nNrzc1JDNz4EfL7U-A/edit

11

Figure 3: An example section of the ontology tree.

Usage examples

The query API exposes the following REST endpoints:

 GET /techniques

It returns the techniques cached in memory and pulled from the PaNET

ontology. It accepts a Loopback filter

(https://loopback.io/doc/en/lb4/Querying-data.html#filters) as a

query parameter and returns a list of Techniques objects. Following

are the fields which belong to the Technique object and that can be

used in the Loopback filter:

 pid

the PURL identifier coming from the PaNET ontology

 name

the name from the PURL link

12

 synonym

the list of synonyms for the given pid

 relatives

the list of pids of descendants of the given technique and

including it

 createdAt

the time of creation in the memory cache, useful when clearing

the cache

 GET /techniques/count

It returns the number of techniques cached in memory and pulled from

the PaNET ontology, following input conditions. It accepts a Loopback

filter as a query parameter and returns the numbers of Techniques

matching the specified filter. The fields available in the Loopback

filter are the same as for the previous endpoint.

 GET /techniques/{id}

It returns the technique(s) with the provided pid. It also accepts a

Loopback filter, with the same available fields as before.

 GET /techniques/pan-ontology

It accepts a Loopback where condition

(https://loopback.io/doc/en/lb4/Where-filter.html) and returns

another Loopback where condition containing the relatives of the

given input condition.

The following example illustrates how the GET /techniques/pan-ontology

endpoint works. This endpoint is the only one used in the integration with

the search-API. More examples are available in Appendix 2.

Input:

{

 “pid” : ”http://purl.org/pan-science/PaNET/PaNET00210”

}

REST call:

/techniques/pan-
ontology?where=%7B%22pid%22%3A%22http%3A%2F%2Fpurl.org%2Fpan-
science%2FPaNET%2FPaNET00210%22%7D

Output:

{
 "pid” : {
 "inq : [
 "http://purl.org/pan-science/PaNET/PaNET00210",
 "http://purl.org/pan-science/PaNET/PaNET01318",
 "http://purl.org/pan-science/PaNET/PaNET01319"
]
 }
}

http://purl.org/pan-science/PaNET/PaNET00210

13

Implementation

The implementation has been built on top of the Loopback 4 framework. We

reference here the pan-ontologies-API data flow for the PaNET ontology.

The data flow in a typical query to the PaNOSC search api containing a

condition on techniques is as follows:

1. The search-API receives a Loopback filter per the search-API spec.
2. The where part of the filter, related to, e.g., techniques, is

forwarded to the pan-ontologies-API.

3. The pan-ontologies-API fetches the ontology from an external source
(if not already cached).

4. The fetched ontology is processed depending on the ontology logic
(in the diagram the PaNET one) and the expanded Loopback where

condition is returned.

5. The search-API integrates the expanded techniques clause with the
original where condition from step two and sends it to the data

catalogue. Each individual search API is responsible to translate

the full where condition to the syntax used by the catalogue.

In the example in fig. 4, which is specific to the search API SciCat

implementation, the search API translate technique pid key to

“techniques.pid” as requested from SciCat backend.

Figure 4: pan-ontologies-API data flow

Given its role in the data model, namely the fact that it does not depend

on the data catalogue implementation (e.g. ICAT and SciCat can use the

same implementation), the pan-ontologies-API service could work either at

the level of the PaN federated search-API service (the middle layer of

figure 4), thus becoming a federated service or at the level of the data

catalogue of each facility (each box named “search-API” in the bottom layer

of fig.3). If the pan-ontologies-API is deployed at the level of each

facility, steps 2 and 5 of the data flow aforementioned will need to be

implemented individually, while deploying it at the federated level will

14

enable a transparent integration at every facility, since the response

from the pan-ontologies-API can be made compliant with the PaN search-API

requirements in the PaN federated search-API service.

A deployment of the PaNOSC search API which includes the techniques

integration can be accessed at this URL: https://scicat.ess.eu/panosc-api.

Its matching explorer interface is available at

https://scicat.ess.eu/panosc-explorer. The techniques microservice used by

the deployment mentioned above, is accessible at the URL:

https://techniques.scicat.ess.eu/explorer .

Search Results Scoring

Most of the query functionality in the search API provides binary

filtering. For example, the search can be limited to datasets that measured

a certain chemical, under parameters in a specific range. However, the

common free text match that resembles the Google search box, has to rank

the results based on “document relevance” in order to meet user

expectations. The first version of the search API in D3.1 already specified

a metric (expressed in the field named “score”) to be delivered from the

facility endpoints to allow the service to establish this ranking across

the results from different partner sites. With this deliverable we specify

how this score metric is to be calculated and used.

Architecture

In contrast to most turn-key software solutions for searching document

repositories (like Elasticsearch) we have to find and implement a solution

that works well for the task of establishing a relevance score despite the

underlying repositories being separate entities in different physical

locations under their own administration. The diagram in Figure 5

illustrates the overall infrastructure needed to deliver a PaNOSC federated

search with scores. It includes the components required both at the

facility level and at the federated level.

https://scicat.ess.eu/panosc-api
https://scicat.ess.eu/panosc-explorer
https://techniques.scicat.ess.eu/explorer

15

Figure 5: PaNOSC Federated Search Infrastructure with Scoring

The user submits a query together with the number of items (results)

requested to the PaNOSC federated search API. The query and the number of

items requested are relayed as-is to each connected PaNOSC search API

endpoint at all participating facilities.

Each facility retrieves the relevant results from their catalogue based on

the query. The results are scored and prioritised locally. Each facility

will send the full requested number of scored results back to the federated

search layer. The federated search merges together all the results from

all the participating facilities, sorts them according to the assigned

scores and returns only the most relevant ones to the user. This means

that for n connected facilities each one returning rn results, where 𝑟𝑛 ≤

𝑟, only a result set of r elements is presented to the user and all other
results will be discarded. r is the number of results requested by the

user. A consequence of the flow highlighted, the number of results the

user will be able to request has to be kept relatively low, with 100 being

a reasonable upper end. As mentioned before, due to this merging and

discarding, it is also not possible to offer pagination of the search

results, i.e. to enable the user to see “page 2” and so on of the result.

Getting the result on any given page would require persistent caching of

all the results in the federated service or to retrieve all previous pages

dynamically, which would be very wasteful computationally and slow. In

practice the user is better served by refining the search than by browsing

multiple pages.

16

Establishing the Score

A relevance score can be established using a method called term frequency

– inverse document frequency, TF-IDF for short

(https://en.wikipedia.org/wiki/Tf-idf). TF-IDF assigns a unique weight to

each pair (term, document) where term is a properly pre-processed word

extracted from the document itself. The weight is zero if the term is not

present in the document, therefore is not relevant. On the contrary, the

weight is one if the term has the highest relevance in the document.

To compute the IDF portion of the weights, TF-IDF method requires access

to all the documents in the corpus. However, the PaNOSC federated search

relies on each facility to store their set of documents shared, compute

and provide properly scored search results. As a consequence, the PaNOSC

federated search does not have access to the full set of documents, so

this method cannot be used unless the infrastructure is re-designed and

re-implemented, which is outside of the scope of this project.

A solution to this issue was found in the publication “TF-IDuF: A Novel

Term-Weighting Scheme for User Modelling based on Users' Personal Document

Collections”(https://www.gipp.com/wp-content/papercite-data/pdf/beel17.pdf). The

relevant finding in this paper is that the scoring results performed with

TF-IDF are minimally impacted if you perform the scoring independently on

disjoint subsets of the complete set of documents. If the disjoint set of

documents is defined as the set of documents that each facility has

available in their catalogue and it is not accessible by another facility,

we can apply the process highlighted in the paper, compute the scores

locally and compare them globally. Therefore, we decided to adopt the TF-

IDuF method. Scores are computed independently at each facility utilising

the TF-IDF weights computed locally, as indicated to the paper above. The

results are then merged at the federated level and sorted according to the

externally computed scores.

Scoring Algorithm and Process

The scoring process happens in three phases:

 populate scoring information

 weight computation

 score computation.

Populating scoring information

This step is necessary to provide to the scoring service the key information

to compute the query score on.

Each facility has to retrieve from their catalogue system all the entries

that are publicly accessible in PaNOSC. Next, each entry needs to be

filtered and reformatted according to the relevant fields list. This list

explicitly selects which entries’ fields should be transferred to the

scoring system as scoring information.

The minimal viable set of relevant fields is the ones containing exactly

the fields provided to the federated search, although each facility has

the freedom to enrich the set with additional fields which may provide

more insight in the content and improve the accuracy of the relevancy

https://en.wikipedia.org/wiki/Tf-idf
https://www.gipp.com/wp-content/papercite-data/pdf/beel17.pdf

17

score.

The final step is to insert the scoring information in the scoring system

using the Item endpoint.

Figure 6 illustrates the details of the complete workflow from catalogue

entries to terms weights. The top three blocks illustrate what has been

discussed in this paragraph: extracting entries from catalogue, selecting

the scoring information and inserting them in the scoring system.

Weights computation

Each item inserted in the scoring system, is pre-processed to extract

meaningful terms (Fig. 6, block titled “Terms”). As a result of the weight

computation, each term is assigned a weight for each item where it is found

(Fig. 6, block named “Weights”).

18

Figure 6: Workflow to populate scoring service:

From catalogue entries to terms weights

19

To further clarify, the scoring system will store one weight for each pair

(item, term). Its value is obtained according to the TF-IDF method. These

weights are intended to reflect how relevant the associated term is to the

item within the corpus. The output of this step is a sparse matrix with as

many columns as many unique terms have been extracted from the whole set

of items and as many rows as many items have been inserted in the scoring

system. The weight matrix must be saved within the scoring system,

possibly, in a dedicated database as part of the weight computation

process.

The extraction workflow implements the following series of steps in the

exact order on each item:

1. retrieve item’s scoring information
2. stringify scoring information
3. convert text to lower case
4. remove punctuation (pass 1)
5. remove stop words (pass 1)
6. remove apostrophes
7. remove extra spaces
8. remove stop words (pass 2)
9. extract words from each item
10. applying stemming to all words and create terms

11. remove punctuation (pass 2)

12. remove spaces (pass 2)

13. remove short terms (terms with length 1)

14. computes TF for each term of each items

15. computes IDF for each term

16. computes TF-IDF for each (term, item) pair

This is a resource intensive step. It can be performed off-line at

reasonable intervals. The weight computation needs to be re-run after

updating or adding new items in the corpus, especially when the new

information would change the balance of the weights. The decision when the

weights computation should be run is left to the individual facility.

Score computation

Users submit a query qu and the number of items requested nu to the federated

search, which in turn, it submits the query as-is to each facility search

API. Each API has to retrieve the results set from their catalogue, and

then submit it together with the query to the scoring system.

The scoring system will perform term extraction on the query, extracting

meaningful terms needed for the scoring. The weights matrix is reduced by

selecting only the rows related to the items present in the results set

and the columns matching the query’s meaningful terms. Missing values are

set to 0 by default. Items’ scores are computed performing a comparison of

the query’s weights and items’ weights.

The items in the results set are matched with their relevance score, sorted

according to the score, the first nu are sent back to the federated search,

where nu is the number of items requested by the user. If the user does

not provide the number of items requested nu, the system imposes by default

a limit nd which can be set in the configuration.

20

Scoring Implementation

A reference implementation of the scoring system and all its subsystems

has been done in Python which, at this point in time, offers the best set

of libraries for natural language processing (NLP for short). NLP libraries

are used to extract meaningful terms from each item’s scoring information

populated in the scoring system. We refer to this process as item pre-

processing, or terms extraction or, simply, extraction.

The code for the PaNOSC Search Scoring is accessible in the following

repository:

https://github.com/panosc-eu/panosc-search-scoring

The repository contains all the necessary code and documentation on how to

run the service locally, or in a docker container. It also explains how to

populate the service and provides jupyter notebooks with example code on

how to integrate SciCat or any other catalogue system with the scoring

service itself.

Scoring service

Figure 7 provides a detailed overview of how the PaNOSC Search Scoring

(PSS) system is implemented and the endpoints groups available through the

API.

Figure 7. Search Scoring System

The implementation of the PaNOSC Search Scoring is available as an open

source project at the repository https://github.com/panosc-eu/panosc-

search-scoring under the master branch. At the time of writing this

deliverable the latest version is v1.0-beta-4. A docker image tagged

accordingly is available on

https://hub.docker.com/repository/docker/nitrosx71/panosc-search-scoring.

https://github.com/panosc-eu/panosc-search-scoring
https://github.com/panosc-eu/panosc-search-scoring
https://hub.docker.com/repository/docker/nitrosx71/panosc-search-scoring

21

If a facility decides to deploy the reference implementation of the

scoring, they can do so by leveraging the docker-compose available in the

official repository which deploys the latest release of the service

together with a mongodb which is used as permanent storage for scoring

information, and scoring weights.

Common Search API Endpoint Implementations

Reference API

The reference implementation has been updated to include all the changes

highlighted in the previous sections. The code for the reference

implementation of the API is available in this repository:

https://github.com/panosc-eu/search-api

The master branch is maintained in a ready-to-run state and can be used to

deploy it locally for testing purposes or as a base to develop additional

functionalities.

In order to install it and run it locally, please follow these steps:

 git clone https://github.com/panosc-eu/search-api.git
 cd search-api
 npm install
 set environmental variables (please read below for more info)

 npm start

The service will be accessible at http://localhost:3000/api. To test the

reference implementation with the technique’s expansion enabled, they have

to define the environmental variable PANET_BASE_URL with the URL of their

instance of the technique service mentioned previously.

ICAT

The ICAT community has developed an implementation of the PaNOSC search

API (the ICAT search API) for use with facilities that are running the

ICAT data catalogue. The code can be found at https://github.com/ral-

facilities/datagateway-api. It is a Flask-based application that fetches

data from an ICAT instance https://flask.palletsprojects.com. At the time

of this writing, a first version that is ready to be used and tested by

other facilities has been released. The minimum required prerequisites for

the ICAT search API are a Python 3.6 installation, an ICAT server

(https://github.com/icatproject/icat.server) and the anonymous ICAT plugin

authenticator (https://github.com/icatproject/authn.anon).

The configuration file is called config.json (of which an example

“config.json.example” is given in the source tree). In the configuration

file the “datagateway_api” JSON object is of no interest for the ICAT

search API and can be safely removed. Notable fields are “log_location”

that as the name says points to the log file location,

“search_api.extension” that is the base path of the ICAT search API and

“search_api.icat_url” that is the URL of the ICAT instance from where data

https://github.com/panosc-eu/search-api
https://github.com/panosc-eu/search-api.git
http://localhost:3000/api
https://github.com/ral-facilities/datagateway-api
https://github.com/ral-facilities/datagateway-api
https://flask.palletsprojects.com/
https://github.com/icatproject/icat.server
https://github.com/icatproject/authn.anon

22

must be fetched.

The ICAT search API outputs data in the format defined by the PaNOSC data

model. To interface with ICAT, there needs to be a way of translating

between this data model and the ICAT schema.

To map between each data model, a JSON file called search_api_mapping.json

is used (the source tree contains an example named

“search_api_mapping.json.example”) which defines the mappings for each

PaNOSC entity (and all the attributes within them). This is configurable

so these mappings can be changed as needed.

Within the mapping file, each of the JSON objects represents a PaNOSC

entity. Inside each object, there is a base_icat_entity which defines which

ICAT entity the PaNOSC entity links to. There are also key-value pairs of

all of the fields which exist for the PaNOSC entity, where the value is

the ICAT field name. For fields which are related entities, the value

contains a JSON object instead of a string. The contents of this object

are the PaNOSC entity name that the field name relates to and also the

ICAT field name translation.

Some entities including Affiliation and Technique are going to be added in

the new ICAT 5 release (see: https://github.com/icatproject/icat.server/).

Such entities do not exist in previous ICAT versions. Please refer to ICAT

documentation for the list of entities.

There is one piece of functionality that has not been implemented yet:

units and prefixes.

To run the ICAT search API using the Flask built-in development server,

users should follow these steps:

1. git clone https://github.com/ral-facilities/datagateway-api
2. cd datagateway-api/datagateway_api
3. cp config.json.example config.json
4. edit config.json as needed to match user environment
5. cp search_api_mapping.json.example search_api_mapping.json
6. edit search_api_mapping.json as needed to match the way user uses ICAT
7. curl -sSL https://raw.githubusercontent.com/python-

poetry/poetry/master/get-poetry.py | python -
8. source ~/.poetry/env
9. poetry install
10. poetry run python -m datagateway_api.src.main

By default the ICAT search API runs on http://localhost:5000.

The following queries retrieve the number of instruments and a possible

instrument called "Test Instrument" (assuming to have set "search-api" as

the base path of the ICAT search API in the configuration file config.json):

http://127.0.0.1:5000/search-api/instruments/count
http://127.0.0.1:5000/search-api/instruments?filter=
 {"where":{"name":"Test Instrument"}}

Do not use the Flask built-in development server when deploying to

production. It is intended for use only during local development. It is

https://github.com/icatproject/icat.server/
https://github.com/ral-facilities/datagateway-api
http://localhost:5000/

23

not designed to be particularly efficient, stable or secure.

For a production deployment use a WSGI container. An example of a production

deployment is given using the WSGI container uWSGI in conjunction with the

Nginx web server.

Install the WSGI container uWSGI with the command:

pip install uwsgi

To install all the Python dependencies, create a file requirements.txt in
the root folder of the ICAT search API with the following content:

Flask-RESTful==0.3.9
SQLAlchemy==1.3.8
PyMySQL==1.0.2
Flask-Cors==3.0.9
apispec==3.3.0
flask-swagger-ui==3.25.0
PyYAML==5.4
python-icat==0.21.0
suds-community==0.8.4
py-object-pool==1.1
cachetools==4.2.1
Flask-SQLAlchemy==2.4.4
requests==2.25.1
python-dateutil==2.8.1
pydantic==1.8.2

and execute the command:

pip install -r requirements.txt

In the root folder of the ICAT search API create a file uwsgi.ini with the

following content:

[uwsgi]
master=true
single-interpreter=true
enable-threads=true
plugin=python3
socket=/tmp/search-api.sock
chmod-socket=666
mount=/search-api=datagateway_api/wsgi.py

To run the application execute the following command inside the root folder

of the ICAT search API:

uwsgi --ini uwsgi.ini

Install the Nginx web server (assuming to have a Debian/Ubuntu system):

sudo apt-get install nginx

Inside the folder /etc/nginx/sites-available create a file called flaskconfig
with the following content:

server {
 listen 80;

24

 server_name localhost;

 location / {
 include uwsgi_params;
 uwsgi_pass unix:///tmp/search-api.sock;
 }
}

Execute the following commands:

cd /etc/nginx/sites-enabled
sudo ln -s ../sites-available/flaskconfig .
sudo service nginx restart

The ICAT search API will be available at http://localhost/search-api. The

use of the Apache web server with the mod_wsgi could be an alternative. To

see other production deployment options please visit

https://flask.palletsprojects.com/en/2.0.x/deploying/.

SciCat implementation

The code for the Search API SciCat implementation is accessible in this

repository:

https://github.com/SciCatProject/panosc-search-api

The master branch is maintained in a ready-to-run state. Facilities that

would like to deploy it on their infrastructure, can just download the

latest commit from the master branch. We are planning to start creating

official releases properly tagged. At the time of this writing, the SciCat

implementation is complete with advanced technique querying and search

scoring integration.

To run a local copy of the search, users should follow these steps:

1. git clone https://github.com/SciCatProject/panosc-search-api.git
2. cd panosc-search-api
3. npm install
4. set environmental variables (please read below for more info)
5. npm start

In order to simplify the service configuration, a template file

https://github.com/SciCatProject/panosc-search-

api/blob/master/local_test.bash.template has been added to the repository

which encompasses steps 4 and 5. Please make a copy of it, rename it

local_test.bash, assign the correct values to the variables as explained

below and use it to run the search api locally.

The environmental variables required to run the search api locally are the

following:

 BASE_URL : base url of SciCat backend

 FACILITY : name of your facility

 PSS_BASE_URL : base url of the PaNOSC Scoring system

 PSS_ENABLE : 1 if PaNOSC scoring system is enabled, 0 if not

 PANET_BASE_URL: base url of the Techniques Pan Ontologies API

http://localhost/search-api
https://flask.palletsprojects.com/en/2.0.x/deploying/

25

If you want to run the search API in a docker container, you can build the

docker image locally with the command:

 docker build --tag panosc-search-api:local .

This command uses the docker file provided in the repo. Users should make

sure to configure the environment variables to match their IT

infrastructure, before creating the container.

Invenio RDM implementation

Invenio RDM is a turn-key research data management repository platform

based on Invenio Framework and Zenodo.

The search backend of Invenio RDM is ElasticSearch and the PaNOSC search

API implementation to this data catalogue type is based on the

ElasticSearch connector of the Loopback framework.

The metadata model of Invenio RDM is an extension of the DataCite metadata

scheme. The API implementation maps the elements of this metadata scheme

to the model of the PaNOSC search API.

Access of the files in the Invenio RDM is implemented in the provider with

the record API of the Invenio RDM.

The code for this implementation is available in this repository:

https://github.com/panosc-eu/search-api/tree/dev/invenio-rdm-provider

The installation of a local instance of the provider is very similar to

the installation of other PaNOSC search API implementations and it consists

the following steps:

1. git clone –branch dev/invenio-rdm-provider https://github.com/panosc-
eu/search-api.git

2. cd search-api
3. npm install
4. set INVENIO_IP environment variable to the address of the InvenioRDM

instance
(this is necessary for file access)

5. set the address of the ElasticSearch service in the
server/datasources.json file

6. npm start

The creation of a DockerImage to run this search API provider in a

containerized environment is identical to the solution defined in SciCat

implementation.

Status of Endpoints at Partners

The list of facilities providing data to a running instance of the federated

API is provided in the browser at the root URL where the API is running.

The current deployment at ESS can be reached at the URL:

https://inveniosoftware.org/products/rdm/
https://inveniosoftware.org/products/framework/
https://www.zenodo.org/
https://www.elastic.co/
https://schema.datacite.org/
https://schema.datacite.org/
https://github.com/panosc-eu/search-api/tree/dev/invenio-rdm-provider

26

 https://federated.scicat.ess.eu/

This URL provides information on the configuration of the instance running.

At the time of writing this deliverable, the following JSON object is

returned:

{
 "uptime_seconds" : 6646268.156,
 "uptime" : "1846:11:08",
 "api_version" : "v2.2",
 "docker_image_version" : "v2.2",
 "hosting_facility" : "ESS",
 "environment" : "production",
 "data_providers" : [
 "https://icatplus.esrf.fr/api",
 "https://scicat.ess.eu/panosc-api",
 "https://fairdata.ill.fr/fairdata/api",
 "https://searchapi.maxiv.lu.se/api"
]
}

As we can see from the information provided, the ESS instance of the

federated search API pulls data directly from search APIs running on ESS,

ILL, ESRF, and MaxIV.

The up to date list of active data providers can be found in the following

configuration file in the Github repository:

https://github.com/panosc-eu/panosc-federated-search-

service/blob/master/.env

This allows anyone to checkout the latest commit on the master branch and

run a fully functional instance of the PaNOSC federated search connected

to all active data sources locally on their machine.

Note:

Facilities wanting to join the community of facilities that make data

open via the PaNOSC search API are welcome to submit a pull request

to the above file, adding their endpoint URL. This will initiate a

(manual) review of their endpoint compliance before a merge.

ESS

The ESS focus has been on leading the work to deploy the first version of

federated search and its testing. Currently the federated API is deployed

only on ESS infrastructure and is accessible at the URL

https://federated.scicat.ess.eu

The reference and SciCat implementations of the PaNOSC search API have

been maintained and kept in sync. Since the last deliverable, the scoring

service has been developed, and the techniques service, developed by PSI

under the ExPANDS project, has been integrated. The local instance of the

PaNOSC search API instance, accessible at https://scicat.ess.eu/panosc-

api, offers full integration with the scoring and techniques services.

For the scoring system, ESS organised a workshop to support other

facilities in the adoption. Partners have received support regarding the

federated search API, local search API and scoring system to different

https://federated.scicat.ess.eu/
https://icatplus.esrf.fr/api
https://scicat.ess.eu/panosc-api
https://fairdata.ill.fr/fairdata/api
https://searchapi.maxiv.lu.se/api
https://github.com/panosc-eu/panosc-federated-search-service/blob/master/.env
https://github.com/panosc-eu/panosc-federated-search-service/blob/master/.env
https://federated.scicat.ess.eu/
https://scicat.ess.eu/panosc-api
https://scicat.ess.eu/panosc-api

27

facilities, including compliance review reports.

XFEL

European XFEL (https://www.xfel.eu/), has 6 scientific instruments, which

are performing experiments since late 2017. Their metadata are stored in

MyMdC (https://www.xfel.eu/), the metadata catalogue used within European

XFEL.

The data and metadata information are made available to the experiment

team immediately after data is taken, MyMdC used to store the metadata and

provide the necessary access to the data files. In accordance with the

European XFEL Data Policy

(https://www.xfel.eu/users/experiment_support/policies/scientific_data_po

licy/index_eng.html), data and metadata have a default embargo period of

3 years, during which access is restricted to the experimental team. After

the embargo period data and metadata became public, being possible for

external people to request access to it.

European XFEL metadata provides RESTful APIs that allow their metadata to

be queried, including the "Search API" defined within WP3. The current

list of implemented methods can be found at

https://in.xfel.eu/metadata/api-docs/index.html (default available APIs)

and https://in.xfel.eu/metadata/api-

docs/index.html?urls.primaryName=PaNOSC%20API%20Docs (PaNOSC search

APIs). This endpoint (https://in.xfel.eu/metadata/api) currently serves

metadata related to all Open Data (and embargoed) experiments, provided

that valid authentication is provided.

In order to fulfil the PaNOSC search API, XFEL did integrate on MyMdC the

techniques defined on project https://expands-eu.github.io/ExPaNDS-

experimental-techniques-ontology, however it is responsibilities of the

Instrument Experts and users to select them and correctly assign it to the

taken data. MyMdC endpoint is fully compliant with the federated search,

except for the scoring implementation which is, at the time of publishing

of this document, under development.

Using MyMdC any registered user can query live data from all the proposals

(s)he has access to. The Federated Search, being registered as a trusted

to the endpoint, has access to all the publicly accessible data.

ESRF

There are more than 40 beamlines currently performing experiments at the

ESRF. Their data and metadata are archived and stored in a metadata

catalogue named ICAT (https://icatproject.org/). Following the ESRF data

policy (http://www.esrf.eu/datapolicy), the data is made available as soon

as the data is produced and accessible via the data portal

(https://data.esrf.fr). Data and metadata will be publicly available after

the embargo period (3 years by default) during which access is restricted

to the experimental team, represented by the Principal Investigator (PI).

Each investigation has its own persistent identifier (DOI) that is obtained

from Datacite (https://datacite.org/). The data of the Human Organ Atlas

project (https://human-organ-atlas.esrf.fr/) has been made accessible from

the search API (cf.Improvements and documentation updates).

https://www.xfel.eu/
https://www.xfel.eu/
https://www.xfel.eu/users/experiment_support/policies/scientific_data_policy/index_eng.html
https://www.xfel.eu/users/experiment_support/policies/scientific_data_policy/index_eng.html
https://in.xfel.eu/metadata/api-docs/index.html
https://in.xfel.eu/metadata/api-docs/index.html?urls.primaryName=PaNOSC%20API%20Docs
https://in.xfel.eu/metadata/api-docs/index.html?urls.primaryName=PaNOSC%20API%20Docs
https://in.xfel.eu/metadata/api
https://expands-eu.github.io/ExPaNDS-experimental-techniques-ontology
https://expands-eu.github.io/ExPaNDS-experimental-techniques-ontology
https://icatproject.org/
http://www.esrf.eu/datapolicy
https://data.esrf.fr/
https://datacite.org/
https://human-organ-atlas.esrf.fr/

28

An OAI-PMH endpoint has been developed and provides access to the high

level metadata of all the investigations done at the ESRF

(https://icatplus.esrf.fr/oaipmh). Besides, a search API has been deployed

inline with the PaNOSC deliverable that exposes a subset of the public

data (https://icatplus.esrf.fr/api/datasets).

The local catalogue (https://data.esrf.fr) authentication uses openID. It

allows users and staff to access their data. Nevertheless, the search API

allows anonymous access. It is also possible to create an account via the

ESRF User portal (https://smis.esrf.fr/). Every user that participates in

an experiment has a role. The main roles are: Principal investigator, local

contact, scientist, participant, etc. The PI of an experiment can add a

user as a collaborator. This allows sharing the data

(https://www.youtube.com/watch?v=FDUFPpnllxE).

More than 900 parameters have been identified as metadata

(https://gitlab.esrf.fr/icat/hdf5-master-config/-

/blob/master/hdf5_cfg.xml), and are captured and stored automatically

during the data acquisition. One of these parameters is the technique that

we foreseen to make mandatory. We are currently using the search API

provided as a demonstrator, however we are in the process of deploying the

search API implemented within ICAT.

ILL

The data catalogue of the ILL (https://data.ill.fr) provides access to

both embargoed and open data. A search interface allows users to obtain

metadata concerning proposals based on proposal ID, instrument, reactor

cycle and also more open, full-text searches. We use DataCite as the

registration agency of DOIs for the data and the data catalogue has been

registered with Re3Data since 2016

(https://www.re3data.org/repository/r3d100012072).

The ILL provides an OAI-PMH endpoint that enables harvesting of metadata

of the available open data (https://data.ill.fr/openaire/oai). Currently

metadata concerning more than 2500 proposals since 2013 is available

through this endpoint. The endpoint has been registered with OpenAire since

April 2021.

Concerning the Search API of WP3, a production version has been in operation

since May 2021 (https://data.ill.fr/fairdata/api). This endpoint serves

metadata related to all proposals that have Open Data (currently more than

2500).

CERIC-ERIC

As part of the current deliverable the ICAT data catalogue has been fully

deployed in production at CERIC replacing the previous test deployment

that was using cloud resources provided by the German Electron Synchrotron

DESY. The current CERIC deployment of the ICAT data catalogue can be

accessed at https://data.ceric-eric.eu.

All the objectives set in the previous deliverable have been achieved. The

OAI-PMH service previously implemented at CERIC has been replaced with the

one provided by the ICAT community

(https://github.com/icatproject/icat.oaipmh) and is accessible at

https://icatplus.esrf.fr/oaipmh
https://icatplus.esrf.fr/api/datasets
https://data.esrf.fr/
https://smis.esrf.fr/
https://www.youtube.com/watch?v=FDUFPpnllxE
https://gitlab.esrf.fr/icat/hdf5-master-config/-/blob/master/hdf5_cfg.xml
https://gitlab.esrf.fr/icat/hdf5-master-config/-/blob/master/hdf5_cfg.xml
https://data.ill.fr/
https://www.re3data.org/repository/r3d100012072
https://data.ill.fr/openaire/oai
https://data.ill.fr/fairdata/api
https://data.ceric-eric.eu/
https://github.com/icatproject/icat.oaipmh

29

https://data.ceric-eric.eu/oaipmh/request?verb=Identify. The default

implementation of the WP3 search API has been replaced with the one

implemented by the ICAT community and its base URL is https://data.ceric-

eric.eu/search-api. Both the OAI-PMH service and the search API are

disseminating real data.

A metadata ingestion service, python based, has been developed and

deployed. This service is in charge of populating ICAT catalogue with

metadata coming from user office platform (currently VUO) and from the

data file collected during the experiments and saved on the Elettra storage

system. The software is modular in such a way to be adapted to other

“sources” (e.g. other storage systems) of metadata and more types of

“destinations” (e.g. others catalogues). Thanks to its modularity, it is

easy to add capabilities to extract metadata from new file formats as well.

At the beginning of 2022 the number of open datasets has increased. This

is due to fast track and Covid-19 related experiments which have a shorter

embargo period, these will be immediately searchable using PaNOSC

interfaces. Due to the distributed nature of the CERIC consortium, a

peculiar goal is to collect all the data acquired during experiments all

over the partner facilities. CERIC had a successful pilot of transferring

data between TU Graz labs and the Elettra storage system.

ELI

The Extreme Light Infrastructure (ELI) consists of complementary facilities

located in the Czech Republic, Hungary and Romania. The ELI facilities,

built as individual construction projects, are now coming together as an

integrated organisation, the ELI European Research Infrastructure

Consortium (ELI ERIC), that will be in charge of their joint operations.

ELI is still in the evaluation phase of selecting the proper data catalogue.

A test ICAT instance and a test Invenio RDM instance are deployed and both

of these data catalogue solutions support the PaNOSC search API and the

OAI-PMH technologies. ELI facilities do not have available open data to

supply the Federated Search API, however demo metadata is available on the

Federated Search API based on the previously delivered json based data

file.

https://data.ceric-eric.eu/oaipmh/request?verb=Identify
https://data.ceric-eric.eu/search-api
https://data.ceric-eric.eu/search-api

30

The Federated Search Service

Backend API

The PaNOSC Federated Search API can be deployed in any suitable cloud or

on-premise location. It has not been designed with a particular hosting

organisation in mind. Given its stateless implementation, multiple

instances can exist completely independently without the need to sync any

information between them. The code for the Federate Search API is

accessible in the following repository: https://github.com/panosc-

eu/panosc-federated-search-service

The production branch is named master. Official versions are also marked

with tags. Current release tag at the time of writing is v2.5. For more

information about how to run the federated search both locally or in a

docker container, please check the Readme file and all the documentation

contained in the repository. The repository also provides a test docker

compose to run the same service in a docker container.

The repository also contains a bash script to run the service locally,

named “run_locally.bash”. This script also leverages the official list of

data providers defined in the file:

https://github.com/panosc-eu/panosc-federated-search-

service/blob/master/.env

Federated items selection

The federated search API collects the nf(i) results from each facility i.

Results nf(i) returned by facility i are less than or equal to the number

of results requested by the user nu. These results will be provided with

an associated relevancy score computed according to the TF-IDuF

methodology. The relevancy score will have a value between 0 and 1, where

1 indicates the most relevant results.

All the results will be combined together and sorted in descending order

according to the relevancy score. The first nu results are selected as the

most relevant items according to the query received, and sent back to the

user as query results. nu is the number of items requested by the user.

Deployment Procedure

The git repos, providing the code for the federated search, also contains

multiple options to run it locally.

First clone the repo locally:

 git clone https://github.com/panosc-eu/panosc-federated-search-service.git

 cd panosc-federated-search-service

To run an instance locally with the local code but with the official data

providers, please the script provided:

 ./run_locally.bash

https://github.com/panosc-eu/panosc-federated-search-service
https://github.com/panosc-eu/panosc-federated-search-service

31

If you would like to build a docker image for your own use, you can run

the following docker command:

 docker build

-t my-local-federated-search:v1.0

-f ./search-api/Dockerfile

./search-api

A script to facilitate the process to publish the docker image is included

in the repository. It is named docker-image-release.sh and it is found in

the main folder. This script is used to upload and publish the official

docker images, which can be achieved with the following command:

 ./docker-image-release.sh <docker-hub-user> <git-commit-or-tag>

If we want to publish the docker image for the new release 2.2 under the

ess account, this will be the command to run:

 ./docker-image-release.sh ess v2.2

To facilitate testing of the federated search two docker compose files

have been included in the repository:

 ./test/docker-compose-local-data-provider.yaml
This file starts a full stack of containers and allows to test the

federated search locally in an completely isolated environment. The

data providers are included and also run locally in containers also

 ./test/docker-compose-local-data-provider.yaml
This file starts a single docker container with the federated search

configured to use the official list of data providers

In both cases, the federated search API will be available at the local URL

http://localhost:3000/api or through the explorer UI:

http://localhost:3000/explorer.

Configuration of the federated search is achieved setting the following

environmental variables:

 API_VERSION : API version used in the running instance. Default:

unknown

 DOCKER_IMAGE_VERSION : tag of the docker image used for the running

instance, if any. Default: unknown

 HOSTING_FACILITY : name of the hosting facility for the running

instance. Default: unknown

 ENVIRONMENT : string identifying the environment where the instance

is running. Example: develop, test, or production. Default: unknown

 PROVIDERS : comma separated list of facilities PaNOSC local search

apis that are used when running queries. Example:

"https://icatplus.esrf.fr/api,https://scicat.ess.eu/panosc-

api,https://fairdata.ill.fr/fairdata/api". Default: unknown

 DEFAULT_LIMIT : number of results returned from each facility if no

limit is provided in the filter parameter. Example: if set to 10.

When no limit is provided in the filter, the federated search will

http://localhost:3000/api
http://localhost:3000/explorer

32

return 10 results from each facility. Default: 100

Those variables are set automatically in the scripts highlighted above.

As we already mentioned before, an instance of the PaNOSC federated search

is currently running at ESS. The main URL is

https://federated.scicat.ess.eu/, which provides the status of the service

in json format, including the list of data providers.

The explorer interface is accessible at

https://federated.scicat.ess.eu/explorer/, while the API base URL is

https://federated.scicat.ess.eu/api.

Web Frontend

The formal deliverable of the Search Service is fulfilled with the

availability of an implementation of the Search API that federates results

from the participating partner institutes. To make the search facility

more accessible to end users a web frontend (or another kind of end user

interface) is required. This is also available from the collaboration with

WP4, where a user interface based on former PaN Portal's frontend is being

developed.

The current prototype, at the time of writing available at http://pan-dev-

portal.eli-laser.eu, helps the user to formulate complex Search API

queries. Overall design and features are yet to be refined. The codebase

can be found at https://github.com/panosc-portal/searchui

Figure 8: Screenshot of the federated search demonstrator web frontend.

https://federated.scicat.ess.eu/
https://federated.scicat.ess.eu/explorer/
https://federated.scicat.ess.eu/api
http://pan-dev-portal.eli-laser.eu/
http://pan-dev-portal.eli-laser.eu/

33

Summary and Outlook

In the Data Catalogue Work Package (WP3), this deliverable marks an

important achievement. The remaining deliverables in the WP are focussed

on metadata quality and the local implementation of the data catalogues

(OAI-PMH harvesting, integration of data sources, search endpoints and

compliance with API definition, etc.) This deliverable defines the

functionality baseline for the PaNOSC Domain Specific Search as one of the

core pillars of our open/FAIR data infrastructure. The partners now share

a better understanding of data curation tasks, dataset taxonomies and the

types of queries on the data repositories that might be relevant. Following

the deployment of the Federated Search Service and the associated Web

Frontend, we have seen significant momentum to add more features and search

functionality. This corroborates the usefulness of the iterative

development approach that has been taken. Before more features will be

considered, though, we need to ensure there are a significant number of

compliant implementations of the common API in its most up to date version.

The quality of the search results is partially depending on the correct

implementation of the search API and the scoring. The metadata corpus held

in the local data catalogues needs to follow the best practices and agreed

mappings for queries involving experimental technique, parameters, roles,

etc.

In terms of software development tasks, we expect to be able to resolve a

number of smaller issues in the common code base as they arise during the

course of the PaNOSC project and for the coming future. Operational

stability and fault tolerance are important aspects that have not had much

attention in the proof of concept operations so far. Moving forward, the

main tasks should be to ensure the local catalogues have a fully compliant

connection to the federated search and the local curation of metadata is

in a good shape at least for new datasets entering the repositories.

34

Appendix 1 Search Query Examples

Leveraging the ESS instance of the federated search api, we can provide

live queries examples that users can test directly from their machine.

Example 1: Datasets where title contains the word data

This query search for all the datasets where the title contains the word

data, order the results alphabetically and then returns the first 10

Endpoint: Datasets

Filter

{

 "limit": 10,

 "where" : {

 "title" : {

 "like" : "data"

 }

 }

}

REST call

https://localhost:3000/api/Datasets?filter=%7B%22limit%22%3A10%2C%22where%22%3A%7

B%22title%22%3A%7B%22like%22%3A%22data%22%7D%7D%7D

Response

[

 {

 "pid": "20.500.12269/00fd159a-0fe7-46d2-855d-a5dfa3d4dc13",

 "title": "V20 data",

 "isPublic": true,

 "size": 0,

 "creationDate": "2019-05-31T17:56:48.000Z",

 "score": 0,

 "provider": "https://scicat.ess.eu/panosc-api"

 },

 {

 "pid": "20.500.12269/026fe366-b469-41b7-9e5e-b5cf8b91e992",

 "title": "V20 data",

 "isPublic": true,

 "size": 0,

 "creationDate": "2019-06-01T09:36:43.000Z",

 "score": 0,

 "provider": "https://scicat.ess.eu/panosc-api"

 },

35

 {

 "pid": "20.500.12269/0311fead-04fb-45bd-b848-4a471fb50481",

 "title": "V20 data",

 "isPublic": true,

 "size": 0,

 "creationDate": "2019-06-01T16:00:45.000Z",

 "score": 0,

 "provider": "https://scicat.ess.eu/panosc-api"

 },

 ...

]

Notice that all the returned items have a score of 0. It is important to

be aware that the scoring is triggered when the filter keyword “query” is

used.

Example 2: Datasets relevant to “data beam”

This query searches for all the datasets that are relevant to the keywords

data and beam, orders them by the relevancy score and returns only the

best 10. This query leverages the scoring services.

Endpoint: Datasets

Filter

{

 "limit":10,

 "query":"data beam"

}

REST call

https://localhost:3000/api/Datasets?filter=%7B%22limit%22%3A10%2C%22query%22%3A%2

2data%20beam%22%7D

Response

[

 {

 "pid": "20.500.12269/BRIGHTNESS/MB0033",

 "title": "Sample Data from multiblade 33",

 "isPublic": true,

 "size": 5380741,

 "creationDate": "2017-10-05T18:34:04.000Z",

 "score": 0.8508791135281516,

 "provider": "https://scicat.ess.eu/panosc-api"

 },

 {

 "pid": "20.500.12269/BRIGHTNESS/MG0031",

 "title": "Sample Data from multigrid 31",

36

 "isPublic": true,

 "size": 250398080,

 "creationDate": "2018-09-04T16:46:41.000Z",

 "score": 0.8508791135281516,

 "provider": "https://scicat.ess.eu/panosc-api"

 },

 {

 "pid": "20.500.12269/BRIGHTNESS/MG0023",

 "title": "Sample Data from multigrid 23",

 "isPublic": true,

 "size": 23050232,

 "creationDate": "2018-09-04T16:44:34.000Z",

 "score": 0.8508791135281516,

 "provider": "https://scicat.ess.eu/panosc-api"

 },

 ...

]

In this example, each item returned has a non-zero score. The scores

computation is triggered by the keyword query present in the filter.

Example 3: Datasets relevant to “temperature beam”

This query searches for all the datasets that are relevant to the keywords

temperature and beam, orders them by the relevancy score and returns only

the best 10.

Endpoint: Datasets

Filter

{

 "limit":10,

 "query":"temperature beam"

}

REST call

https://localhost:3000/api/Datasets?filter=%7B%22limit%22%3A10%2C%22query%22%3A%2

2temperature%20beam%22%7D

Response

[

 {

 "pid": "20.500.12269/3f96e58e-fc9b-11e9-b693-64006a47d649O…",

 "title": "OB-4-94cm_to_detector-SP",

 "isPublic": true,

 "size": 0,

 "creationDate": "2019-10-17T22:33:15.000Z",

 "score": 0.8685875164121688,

 "provider": "https://scicat.ess.eu/panosc-api"

37

 },

 {

 "pid": "20.500.12269/962ca040-c6b0-48cb-b95d-992d69f4e140…",

 "title": "Open beam WFM Slits 0.2x25",

 "isPublic": true,

 "size": 185843326,

 "creationDate": "2019-08-02T11:50:43.000Z",

 "score": 0.7963838039187,

 "provider": "https://scicat.ess.eu/panosc-api"

 },

 {

 "pid": "20.500.12269/76a55e29-21f1-4919-81c8-fbdb12ef5eac…",

 "title": "open beam, WFM Slits 0.2x50",

 "isPublic": true,

 "size": 9913385,

 "creationDate": "2019-09-02T16:18:48.000Z",

 "score": 0.7963838039187,

 "provider": "https://scicat.ess.eu/panosc-api"

 },

 ...

]

Example 4: Documents with title containing “data”

This query search for all the documents where the title contains the word

data, order the results alphabetically and then returns the first 10

Endpoint: Documents

Filter

{

 "limit": 10,

 "where" : {

 "title" : {

 "like" : "data"

 }

 }

}

REST call

http://localhost:3000/api/Documents?filter=%7B%22limit%22%3A10%2C%22query%22%3A%2

2data%20beam%22%7D

Response

[

 {

38

 "pid": "10.17199/NXMV08.DSC0001",

 "isPublic": true,

 "type": "publication",

 "title": "Differential scanning calorimetry (DSC)

 data for breast cancer cells",

 "summary": "Datasets from differential scanning calorimetry

 (DSC) data for breast cancer cells",

 "doi": "10.17199/NXMV08.DSC0001",

 "score": 0,

 "provider": "https://scicat.ess.eu/panosc-api"

 }

]

Example 5: Datasets with title contains “open beam”

including all parameters

This query returns the first 10 datasets completed by their parameters

where the title contains “open beam”.

Endpoint: Datasets

Filter

{

 "limit":10,

 "where" : {

 "title" : { "like" : "open beam" }

 },

 "include" : [

 { "relation" : "parameters" }

]

}

REST call

https://scitest.esss.lu.se/panosc-

api/Datasets?filter=%7B%22limit%22%3A10%2C%22where%22%3A%7B%22title%22%3A%7B%22li

ke%22%3A%22open%20beam%22%7D%7D%2C%22include%22%3A%5B%7B%22relation%22%3A%22param

eters%22%7D%5D%7D&access_token=%7B%22%23njs%22%3A%22eyJhbGciOiJIUzI1NiIsInR5cCI6I

kpXVCJ9.eyJfaWQiOiI2MTcxMTYzYmNjMWVjNzA5ZTA2M2M5NDgiLCJyZWFsbSI6ImxvY2FsaG9zdCIsI

nVzZXJuYW1lIjoiaW5nZXN0b3IiLCJlbWFpbCI6InNjaWNhdGluZ2VzdG9yQHlvdXIuc2l0ZSIsImVtYW

lsVmVyaWZpZWQiOnRydWUsImlhdCI6MTY0MzI4Njk2NiwiZXhwIjoxNjQzMjkwNTY2fQ.fTsNM3MKbSkj

dB0z84Wh6k5zy-

SAJ7_IlwznL3OLAH0%22%2C%22%23lb3%22%3A%22rVg991TvLx2FBcmEGcC2muFwLTZO2lhRM4KdyEHB

fKUYnvRukUTGeeFIZ5Jmv2Ei%22%7D

Response

[

 {

39

 "pid": "20.500.12269/017ef494-f78e-44f3-94f8-8e584719ba3c",

 "title": "open beam, WFM Slits 0.2x50",

 "isPublic": true,

 "size": 15195529,

 "creationDate": "2019-09-02T13:29:43.000Z",

 "score": 0,

 "parameters": [

 {

 "name": "start_time",

 "value": "2019-09-02T13:29:43",

 "unit": ""

 },

 {

 "name": "file_name",

 "value": "/data/kafka-to-nexus/nicos_00000500.hdf",

 "unit": ""

 },

 {

 "name": "title",

 "value": "open beam, WFM Slits 0.2x50",

 "unit": ""

 },

 …

 {

 "name": "sample_description",

 "value": "V20 sample",

 "unit": ""

 },

 {

 "name": "sample_temperature",

 "value": 0,

 "unit": "celsius"

 }

]

 },

 ...

]

Example 6: Search for a specific datasets

Request dataset with pid 20.500.12269/0052f856-9615-4f9a-8575-9e180071ff32

complete with all the parameters

Endpoint: Dataset

40

Filter

{

 "include" : [

 { "relation" : "parameters" }

]

}

REST call

https://scitest.esss.lu.se/panosc-api/Datasets/20.500.12269%2F0052f856-9615-4f9a-

8575-

9e180071ff32?filter=%7B%22include%22%3A%5B%7B%22relation%22%3A%22parameters%22%7D

%5D%7D&access_token=%7B%22%23njs%22%3A%22eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ

faWQiOiI2MTcxMTYzYmNjMWVjNzA5ZTA2M2M5NDgiLCJyZWFsbSI6ImxvY2FsaG9zdCIsInVzZXJuYW1l

IjoiaW5nZXN0b3IiLCJlbWFpbCI6InNjaWNhdGluZ2VzdG9yQHlvdXIuc2l0ZSIsImVtYWlsVmVyaWZpZ

WQiOnRydWUsImlhdCI6MTY0MzI4Njk2NiwiZXhwIjoxNjQzMjkwNTY2fQ.fTsNM3MKbSkjdB0z84Wh6k5

zy-

SAJ7_IlwznL3OLAH0%22%2C%22%23lb3%22%3A%22rVg991TvLx2FBcmEGcC2muFwLTZO2lhRM4KdyEHB

fKUYnvRukUTGeeFIZ5Jmv2Ei%22%7D'

Response

{

 "pid": "20.500.12269/0052f856-9615-4f9a-8575-9e180071ff32",

 "title": "Open beam WFM Slits 0.2x25",

 "isPublic": true,

 "size": 195221294,

 "creationDate": "2019-08-02T12:03:28.000Z",

 "score": 0,

 "parameters": [

 {

 "name": "start_time",

 "value": "2019-08-02T12:03:28",

 "unit": ""

 },

 {

 "name": "file_name",

 "value": "/data/kafka-to-nexus/nicos_00000482.hdf",

 "unit": ""

 },

 …

 {

 "name": "sample_description",

 "value": "",

 "unit": ""

 },

 {

41

 "name": "sample_temperature",

 "value": 0,

 "unit": "celsius"

 }

]

}

Example 7: Datasets containing specific parameters

Search for datasets containing a parameter named size with value 0 and a

parameter “sample_temperature” with value 0

Endpoint: Datasets

Filter

{

 "include" : [

 {

 "relation" : "parameters",

 "scope" : {

 "where" : {

 "and" : [

 {"name":"size"},

 {"value":0}

]

 }

 }

 },

 {

 "relation" : "parameters",

 "scope" : {

 "where" : {

 "and" : [

 { "name" : "sample_temperature" },

 { "value" : 0 }

]

 }

 }

 }

]

}

REST call

https://scitest.esss.lu.se/panosc-

api/Datasets?filter=%7B%22include%22%3A%5B%7B%22relation%22%3A%22parameters%22%2C

%22scope%22%3A%7B%22where%22%3A%7B%22and%22%3A%5B%7B%22name%22%3A%22size%22%7D%2C

42

%7B%22value%22%3A0%7D%5D%7D%7D%7D%2C%7B%22relation%22%3A%22parameters%22%2C%22sco

pe%22%3A%7B%22where%22%3A%7B%22and%22%3A%5B%7B%22name%22%3A%22sample_temperature%

22%7D%2C%7B%22value%22%3A0%7D%5D%7D%7D%7D%5D%7D&access_token=%7B%22%23njs%22%3A%2

2eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJfaWQiOiI2MTcxMTYzYmNjMWVjNzA5ZTA2M2M5NDg

iLCJyZWFsbSI6ImxvY2FsaG9zdCIsInVzZXJuYW1lIjoiaW5nZXN0b3IiLCJlbWFpbCI6InNjaWNhdGlu

Z2VzdG9yQHlvdXIuc2l0ZSIsImVtYWlsVmVyaWZpZWQiOnRydWUsImlhdCI6MTY0MzI4Njk2NiwiZXhwI

joxNjQzMjkwNTY2fQ.fTsNM3MKbSkjdB0z84Wh6k5zy-

SAJ7_IlwznL3OLAH0%22%2C%22%23lb3%22%3A%22rVg991TvLx2FBcmEGcC2muFwLTZO2lhRM4KdyEHB

fKUYnvRukUTGeeFIZ5Jmv2Ei%22%7D

Response

[

 {

 "pid": "20.500.12269/0052f856-9615-4f9a-8575-9e180071ff32",

 "title": "Open beam WFM Slits 0.2x25",

 "isPublic": true,

 "size": 195221294,

 "creationDate": "2019-08-02T12:03:28.000Z",

 "score": 0,

 "parameters": [

 {

 "name": "start_time",

 "value": "2019-08-02T12:03:28",

 "unit": ""

 },

 {

 "name": "file_name",

 "value": "/data/kafka-to-nexus/nicos_00000482.hdf",

 "unit": ""

 },

 {

 "name": "title",

 "value": "Open beam WFM Slits 0.2x25",

 "unit": ""

 },

 {

 "name": "size",

 "value": 0,

 "unit": ""

 },

 …

 {

 "name": "sample_description",

 "value": "",

 "unit": ""

43

 },

 {

 "name": "sample_temperature",

 "value": 0,

 "unit": "celsius"

 }

]

 },

 …

]

44

Appendix 2: Techniques Ontology

Examples

In this appendix, we provide more examples regarding the techniques

service. We cover only the GET /techniques/pan-ontology endpoint, as it is

the one to integrate in the search-API and most often used.

Example 1: Single technique expansion

Input:

{
 “pid” : ”http://purl.org/pan-science/PaNET/PaNET00210”
}

REST call:

/techniques/pan-
ontology?where=%7B%22pid%22%3A%22http%3A%2F%2Fpurl.org%2Fpan-
science%2FPaNET%2FPaNET00210%22%7D

Output:

{
 "pid” : {
 "inq” : [
 "http://purl.org/pan-science/PaNET/PaNET00210",
 "http://purl.org/pan-science/PaNET/PaNET01318",
 "http://purl.org/pan-science/PaNET/PaNET01319"
]

 }
}

Example 2: Logical or between techniques

Input:

{

 "or" : [
 { "pid" : "http://purl.org/pan-science/PaNET/PaNET00210" },
 { "pid" : "http://purl.org/pan-science/PaNET/PaNET00209" }
]

}

REST call:

/techniques/pan-
ontology?where=%7B%22or%22%3A%5B%7B%22pid%22%3A%22http%3A%2F%2Fpurl.org%2
Fpan-

http://purl.org/pan-science/PaNET/PaNET00210
http://purl.org/pan-science/PaNET/PaNET00210
http://purl.org/pan-science/PaNET/PaNET00209

45

science%2FPaNET%2FPaNET00210%22%7D%2C%20%7B%22pid%22%3A%22http%3A%2F%2Fpu
rl.org%2Fpan-science%2FPaNET%2FPaNET00209%22%7D%5D%7D

Output:

{
 "or" : [
 {

 "pid" : {
 "inq": [
 "http://purl.org/pan-science/PaNET/PaNET00210",
 "http://purl.org/pan-science/PaNET/PaNET01318",
 "http://purl.org/pan-science/PaNET/PaNET01319"
]

 }
 },
 {

 "pid": {
 "inq": [
 "http://purl.org/pan-science/PaNET/PaNET00209",
 "http://purl.org/pan-science/PaNET/PaNET01150",
 "http://purl.org/pan-science/PaNET/PaNET01226",
 "http://purl.org/pan-science/PaNET/PaNET01320"
]

 }
 }
]

}

Example 3: Logical and between techniques

Input:

{

 "and" : [
 { "pid" : "http://purl.org/pan-science/PaNET/PaNET00210" },
 { "pid" : "http://purl.org/pan-science/PaNET/PaNET00209" }
]

}

REST call:

/techniques/pan-
ontology?where=%7B%22and%22%3A%5B%0A%20%20%7B%22pid%22%3A%22http%3A%2F%2F
purl.org%2Fpan-
science%2FPaNET%2FPaNET00210%22%7D%2C%0A%20%20%7B%22pid%22%3A%22http%3A%2
F%2Fpurl.org%2Fpan-science%2FPaNET%2FPaNET00209%22%7D%0A%5D%7D%0A

Output:

{
 "and": [

http://purl.org/pan-science/PaNET/PaNET00210
http://purl.org/pan-science/PaNET/PaNET00209

46

 {

 "pid": {
 "inq": [
 "http://purl.org/pan-science/PaNET/PaNET00210",
 "http://purl.org/pan-science/PaNET/PaNET01318",
 "http://purl.org/pan-science/PaNET/PaNET01319"
]

 }
 },
 {

 "pid": {
 "inq": [
 "http://purl.org/pan-science/PaNET/PaNET00209",
 "http://purl.org/pan-science/PaNET/PaNET01150",
 "http://purl.org/pan-science/PaNET/PaNET01226",
 "http://purl.org/pan-science/PaNET/PaNET01320"
]

 }
 }
]

}

